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The Wavenumber Plane: Nonlinear Schroedinger,

Zakharov Equation and Phillips Figure 8

NLS 2+1

Phillips Figure 8 ——==-
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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described
theoretically by the soliton limit of the Korteweg—deVries equation, a completely integrable soliton system:
Hence the phrase “soliton turbulence” is synonymous with “integrable soliton turbulence.” For periodic-
quasiperiodic boundary conditions the ergodic solutions of Korteweg—deVries are exactly solvable by finite
gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the
energetic peak of a storm have low frequency power spectra that behave as ~w~!. We use the linear Fourier
transform to estimate this power law from the power spectrum and to filter densely packed soliton wave
trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ~w™!
region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation,
which supports our interpretation of the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

DOI: 10.1103/PhysRevLett.113.108501 PACS numbers: 92.10.Hm, 92.10.Lg, 92.10.Sx
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Nonlinear Fourier Methods for Ocean Waves

Alfred R. Osborne* ‘

Nonlinear Waves Research Corporation, Alexandria, VA 22314, U. §. A.

Abstract

Multiperiodic Fourier series solutions of integrable nonlinear wave equations are applied to the study of ocean

waves for scientific and engineering purposes. These series can be used to compute analytical formulae for the

stochastic properties of nonlinear equations, in analogy to the standard approach for linear equations. Here I

emphasize analytically computable results for the correlation functions, power spectra and coherence functions

i of a nonlinear random process associated with an integrable nonlinear wave equation. The multiperiodic

—d Fourier series have the advantage that the coherent structures of soliton physics are encoded in the formulation,

so that solitons, breathers, vortices, etc. are contained in the temporal evolution of the nonlinear power

spectrum and phases. I illustrate the method for the Korteweg-deVries and nonlinear Schrodinger equations.
Applications of the method to the analysis of data are discussed.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the [UTAM Symposium Wind Waves.

Keywords: nonlinear integrable wave equations; finite gap theory; periodic inverse scattering transform; nonlinear Fourier analysis;
nonlinear ocean waves; nonlinear numerical methods; nonlinear time series analysis.
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Abstract

We analyze surface wave data taken in Currituck Sound, North Carolina, during a storm on 4 February 2002. Our focus
is on the application of nonlinear Fourier analysis (NLFA) methods (Osborne 2010) to analyze the data set: The approach
spectrally decomposes a nonlinear wave field into sine waves, Stokes waves, and phase-locked Stokes waves otherwise known
as breather trains. Breathers are nonlinear beats, or packets which “breathe” up and down smoothly over cycle times of
minutes to hours. The maximum amplitudes of the packets during the cycle have a largest central wave whose properties are
often associated with the study of “rogue waves.” The mathematical physics of the nonlinear Schrodinger (NLS) equation is
assumed and the methods of algebraic geometry are applied to give the nonlinear spectral representation. The distinguishing
characteristic of the NLFA method is its ability to spectrally decompose a time series into its nonlinear coherent structures
(Stokes waves and breathers) rather than just sine waves. This is done by the implementation of multidimensional, quasi-
periodic Fourier series, rather than ordinary Fourier series. To determine preliminary estimates of nonlinearity, we use the
significant wave height Hj, the peak period T, and the length of the time series 7. The time series analyzed here have 8192
points and 7' =1677.72 s = 27.96 min. Near the peak of the storm, we find H; ~ 0.55 m, T, = 2.4 s so that for the wave
steepness of a near Gaussian process, S = (7/2/g) H/ Tg, we find § ~ 0.17, quite high for ocean waves. Likewise, we
estimate the Benjamin-Feir (BF) parameter for a near Gaussian process, Igr = (w/2/g) H,T/ TS, and we find Izr ~ 119.
Since the BF parameter describes the nonlinear behavior of the modulational instability, leading to the formation of breather
packets in a measured wave train, we find the Iz for these storm waves to be a surprisingly high number. This is because
IpF, as derived here, roughly estimates the number of breather trains in a near Gaussian time series. The BF parameter
suggests that there are roughly 119 breather trains in a time series of length 28 min near the peak of the storm, meaning
that we would have average breather packets of about 14 s each with about 5-6 waves in each packet. Can these surprising
results, estimated from simple parameters, be true from the point of view of the complex nonlinear wave dynamics of the BF
instability and the NLS equation? We analyze the data set with the NLFA to verify, from a nonlinear spectral point of view,
the presence of large numbers of breather trains and we determine many of their properties, including the rise time for the
breathers to grow to their maximum amplitudes from a quiescent initial state. Energetically, about 95% of the NLFA compo-
nents are found to consist of breather trains; the remaining small amplitude components are sine and Stokes waves. The presence
of a large number of densely packed breather trains suggests an interpretation of the data in terms of breather turbulence,
highly nonlinear integrable turbulence theoretically predicted for the NLS equation, providing an interesting paradigm for
the nonlinear wave motion, in contrast to the random phase Gaussian approximation often considered in the analysis of data.
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Breather Turbulence: Exact Spectral and Stochastic

Solutions of the Nonlinear Schrédinger Equation

Alfred R. Osborne 1*

! Nonlinear Waves Research Corporation
* Correspondence: alosborne@protonmail.com

Abstract: I address the problem of breather turbulence in ocean waves from the point of view of the
exact spectral solutions of the nonlinear Schrodinger (NLS) equation using two tools of mathematical
physics: (1) the inverse scattering transform (IST) for periodic/quasiperiodic boundary conditions (also ‘
referred to as finite gap theory (FGT) in the Russian literature) and (2) quasiperiodic Fourier series,
both of which enhance the physical and mathematical understanding of complicated nonlinear
phenomena in water waves. The basic approach I refer to as nonlinear Fourier analysis (NLFA). The
formulation describes wave motion with spectral components consisting of sine waves, Stokes waves
and breather packets that nonlinearly interact pair-wise with one another. This contrasts to the
simpler picture of standard Fourier analysis in which one linearly superposes sine waves. Breather
trains are coherent wave packets that “breath” up and down during their lifetime “cycle” as they
propagate, a phenomenon related to Fermi-Pasta-Ulam (FPU) recurrence. The central wave of a
breather, when the packet is at its maximum height of the FPU cycle, is often treated as a kind of
rogue wave. Breather turbulence occurs when the number of breathers in a measured time series is
large, typically several hundred per hour. Because of the prevalence of rogue waves in breather
turbulence, I call this exceptional type of sea state a breather sea or rogue sea. Here 1 provide
theoretical tools for a physical and dynamical understanding of the recent results of Osborne et al
[43] in which dense breather turbulence was found in experimental surface wave data in Currituck
Sound, North Carolina. Quasiperiodic Fourier series are important in the study of ocean waves
because they provide a simpler theoretical interpretation and faster numerical implementation of
the NLFA, with respect to the IST, particularly with regard to determination of the breather
spectrum and their associated phases that are here treated in the so-called nonlinear random phase
approximation. The actual material developed here focuses on results necessary for the analysis and
interpretation of shipboard/offshore platform radar scans and for airborne lidar and synthetic
aperture radar (SAR) measurements.




| What s Linear Fourier Analysis?

e A Fourier Series:

h(X,f) — g hneiknx—iWnl‘

n=—¥

* Alinear superposition of sine waves.

* We get the FFT and so have spectra, power
spectra, coherence functions, correlation
functions, and all the useful stuff that come from
Fourier methods!

" * Random phase approximation.




| What is Nonlinear Fourier Analysis?

* A quasiperiodic (multiperiodic) Fourier Series:

n(x z_) . z n ein’kx—in°ﬂ)t+in‘¢
v ) n
neZ"

* Does everything that linear Fourier does, but
has all infinity harmonics: A discretuum.

4 * The nonlinear Fourier components are sine
waves, Stokes waves, breathers,
8| superbreathers, etc.
i

& *° Nonlinear random phase approximation.




The 2+1 Nonlinear ’.
Schroedinger Equation

Depending on the form of the potential
the above equation has the form of:

| 'he 2+1 NLS equation
——1+* The Dysthe equation

"'he extended Dysthe equation
‘he Zakharov Equation




Breather Moving at 30 Degree Angle With Respect
To Dominant Wave Direction

0 n(x’yao)




Solving the Schroedinger Equation for ‘
Arbitrary Potential

3% +yxx+5yyy+U(x1yJ)y:O s=4]
y 1T
_ G(x,y,1) G(x,y,t)=ay,0(x,y,t 17,0 )e
y(x,y,t) - F(X t) B
Y F(X,y,t)zé?(x,y,tl‘c,q)+)

U(x,y,t) =29, InF(x, y,t)'ZSﬂ InF(x ¥, )

- —— o

|i(FG, - GE)+(FG, + Gy - 2F,.G, )+ 5(FG,, + GE,, - 2ch;y) = IFG |

e i

iQ't

O(x,y,t|7, ¢ ) z(K +k, )x+ley I(Q+wy+0’)t
% 0(x,y,0 .07 )

=(x,y,t)=a,




How to

Analyze Data

+ Compute Complex
Surface Elevation from

Compute carrier
wavenumber and
frequency: k, ,@,

E(X,[) = n(x,t) + lﬁ(x,t) measured Surface field

Compute Complex
Modulation from

l//('x’t) - H(x’l’)e ¢ ’ Complex Surface

Compute Potential

¢ Elevation

U(x,t) = \2V|W(x,t)|21 + glFl(W’Wx ’l//xx2+ §2F2(l//sl//x"l/xx) T

NLS Eauation Dysthe Equation Extended Dygthe Equation

v

U(x,t)= %axxlne(x,t 1T,07)

0(x,t1T,07)=

= +
E(x,1)0(x,7 17,0 )e—ik0x+i(a)0+a)’)t

Ao

0(x,t17,07)

O(x,t17,07)




"-' ead. -
Theorem 3 (Baker [1907], Mumford [1984])

- e - Construction
- of Single-valued, Multiply-Periodic meromorphic Functions”

. The most general, single-valued, multiply-periodic meromorphic-functions-of N variables-
- with-2N sets -of -periods -(obeying the necessary relations, see Baker [1907], p. 224), can-
be expressed by means-of theta functions. They can be -determined in-only three ways: "

= (1) —» 9, InO(x,)T
B,0) .
B,¢+)

m

0(x,t
0(x,t

- (i) ~

N—
[To(x-x,.tB,o)
- (i) -

[T6Gx-x,.tB,o")

n=1

[y

q

i!—' where the theta functions -have the form ¥

Ox,t)= Y G ™menime g —e 20 4 o s s s (2)

neZ”

and B is the period matrix. The wavenumbers Kk, frequencies @ -and phases- ¢ -arise from:
loop integrals over the eigenvalue spectrum. ™




Suggested proof - of the Solution Theorem: One shows that each of the three forms for:
constructing - multiply-periodic, - meromorphic - functions - given - above - using - theta:
functions -can -be -written -in -terms - of - multidimensional, quasiperiodic Fourier series.
This means-that

N axx In Q(X,I) — 2 unein-kx—in-(ot+in-¢ q

neZ"

O0(x,t/B,0 ) : : .
¢+ — 2 unem-kx—m-mrﬂn-q) q
0(x,7B,0") nez

N
[16¢x—=x,.tB,07)
n=1

— z U, ein-kx—in-a)rﬂn-q) q

N N
[16Gx—x,.tB,0*) n<Z
=1

m

Where the wavenumbers k, frequencies- @ , phases- ¢ -and coefficients u_ -are determined
from - the - theta - functions in - the - algebraic-geometric - solution -of - a - particular - nonlinear:
wave -equation.-See-example below-for the- KdV -equation.

Comment: The -above results - are - possible -because - theta - functions -have - remarkable-
properties - and -these - allow -one - to - discuss -an _algebra - of -theta - functions and - their-
derivatives, integrals,i.e. they can be added, subtracted, multiplied and divided.
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P Add on the Perturbations

2
_ .

N
[16.¢x.t17.07)

y(x,t)=a, n;O e !

HOn(x,tIT,¢+)

n=0

0,(x,t17,0 )0, (x,t1T,0 )O,(x,217T,0 )... 01
"0, (x,t17,07)6,(x,t17,07) 6,(x,t17T,07) ...

NLS Dygthe Extended Dysthe
Equation Equation Equation




the
Integrable

Case
1+1 NLS

- e~

Integrable 1+1 NLS as Ratio of Theta Functions, Quasiperiodic
Fourier Series and Almost Periodic Fourier Series

Finite Gap Spectral Solutions For Surface Elevation of 1+1 NLS

O(x,t17,0 ) ei[K+K’+k0]x—i[Q+Q'+wo]t
“0(x,t11,0")

E(x,y,t)=a

[Kotljarov & lts, 1976], [Tracy & Chen, 1988]

Y
Theta Functions With Two Sets of Phases

_ . i . ¥ . .
9(x,t|‘C,¢+)= Eenem KX—ine®?+ine , 9n:e iTnetn

nez

Y

Solution of 1+1 NLS as Quasiperiodic Fourier Series: Most
General, Single Valued, Multiply Periodic, Meromorphic Function

— 3
E(x,t11,07) = Z En(’c)e’n°Kx me@?+ineP(Pp™)

nez
[Baker, 1897, 2007], [Zygmund, 1935] [Mumford, 1982], [Osborne, 2018, 2019]

\

/

Solution For 1+1 NLS as Almost Periodic Fourier Series
with limits N — oo, M — oo

E(x,tlT,07)= z EnelK”x_lQnt+lq)n

n=—o0

[Osborne, 2010]




Nonintegrable 1+1 NLS Plus Perturbations as Ratio of Product
of Theta Functions, Quasiperiodic Fourier Series and Almost
Periodic Fourier Series

Finite Gap Spectral Solutions For 1+1 NLS + Perturbations

M

[16.0cr17,.0,)

) mA; ez[K(z)+k0]x—z[Q(t)+w0+w 1t
I16,.x117,.00)
m=1 [Kotljarov & Its, 1976], [Tracy & Chen, 1988]

E(x.t)=a

Step 2:
The
Nonintegrable

Case
1+1 NLS+

Y
Theta Functions With Time Varying Parameters

0,,(x,t)= 2 0,, n(,cn(t))ein-km () x—ine®@,, (1) t—in=d,; (7) 0= STNT,, ()N
nezV 7 ’

Y

Solution of 1+1 NLS + Perturbations as Quasiperiodic Fourier

Series with time varying parameters: Single Valued, Multiply
Periodic, Meromorphic Functions

E(n,0)= Y, Eg(t(r)e™r-mea(n)i-mn-®)
nez

[Baker, 1976], [Mumford, 1982], [Osborne, 2018, 2019]

Y

Solution For 1+1 NLS + Perturbations as
Almost Periodic Fourier Series with time varying
parameters and with limits N — oo, M — co.

oo

E(x,t)= Z En(T(t))eiK(t)x—iQn(t)HiCDn(t)

N=—oo

[Osborne, 2010]



Nonintegrable 2+1 NLS Plus Perturbations as Ratio of Product
of Theta Functions, Quasiperiodic Fourier Series and Almost
Periodic Fourier Series

Ansatz Solution For 2+1 NLS plus perturbations to M orders

M
I16,.e.v.c17,,.0,)

E(x,y.)=a, m[;l ei[K(t)+k0]x—i[Q(t)+wo+a)’]t

16, ce.v.c17,.00)

m=1

Step 3:
The
Nonintegrable

Case
2+1 NLS+

v
Theta Functions With Slowly Varying Parameters to M orders

e e ine Me F
6,,(x,y,1)= z em,n(Tm(t))em X, (O x+ime A, (1) y—ine®,, (1) 1+, ()

nez

_ minet, (f)n
Om’n =e m

Y
Solution For 2+1 NLS plus perturbations to M orders as
Quasiperiodic Fourier Series with Time Varying Parameters:
Single Valued, Multiply Periodic, Meromorphic Function with
Slowly Varying Parameters

SERRENDY =, (1) KO XA y=ine @ (@)1—in-®(1)

nezZN

Solution For 2+1 NLS plus perturbations to M
Orders as AImost Periodic Fourier Series

oo

E(xsyst): z En(t)eiKn(t)x+iAn(t)x_iQn(t)t‘i'ich(t)

Nn=—oo




Riemann Spectrum for 1+1 NLS from
Surface Wave elevation

Measured Space Series and Hilbert transform as function of time

E(x,y,) = n(x,0) + if)(x,1)

!

Estimate carrier amplitude, wavenumber, frequency
and Stokes frequency correction from time series

c'r"i'

Determine the Nonlinear
Fourier Spectrum in

a,,ky, 04,8

'

Compute Potential

U(x,t) = 2|E(x, 1)

'

Solve for Theta with Positive Phase

Terms of the Riemann
Matrix and Phases |

2

9 .InF(x,t)= %U(x,t) = |2(x,0)

O(x,t|T,07) = F(x,1)




Determine
the Nonlinear
Fourier Spec-
trum in Terms

of the
Riemann
Matrix and
Phases Il

Compute Theta with Negative phase

—ikox+i(@w,+Q" )t

H(x,t)=Z(x,t)F(x,t)

4o

0(x,t|T,0 )= H(x,1)

Y

Compute Fourier Transform of Theta Functions

O(x.,t|T,07)= i 6= (1)

N=—c0

Y

Compute Riemann Spectrum

T T
7y ==—n|| lim —[6r_ (e 'dt || lim —[6r ()¢ !t
2 (75T ™ Tl

e

i) J. n= j+k(t)ei(gj+g " lim J.9n— (jriy(De TR, _%(ij +Ty)
T%‘X’ (0] T—)oo 0

{ lim je— j(z)ein'gfdt]

T—><>o

. 1 + —ineQ¢
[ lim Fjenz_j(z)e dt
| \T>" 0







F (f ) General Nonlinear Fourier Spectrum: F ( f ) ——————— Modulational Growth Rate

A Nonlinearity is Mixed —— Modulational Rise Time
————— Stokes Mode/Breather Amplitudes

Breather Packets Ocean Wave Spectrum /f N
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“Table of Largest Bre

No. NLFT  Max. Max Rise Distance
Br. Amp. Amp. Height /Rise Time

0.243 m 4.06a, 2.50Hs; 5.34 km/41.6 min
0239 m 3.99a, 245H; 7.89 km/61.5 min
02060 m 3.58a, 2.20H; 103. km/li_.9 hrs
0.163m 3.05a, 1.88Hs; 4.93 km/38.5 min
161l m  3.02a¢, 1.86H:; 20.3 km/2.63 hrs
156 m  2.95a, 1.82H; 2.08 km/17.1 min
151m  2.90a, 1.78H; 3.72 km/28.0 min
138 m  2.74a, 1.68H; 138. km/17.9 hrs
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